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Al~traet---Criteria have been developed for the prediction of the transition from the homogeneous to the 
heterogeneous regime in two-dimensional bubble columns. The theory of linear stability has been used 
for this purpose. Semibatch and continuous modes of operation have been analysed. The effects of sparger 
design, column height and the liquid phase physical properties have been investigated. A comparison 
between model predictions and experimental observations has been presented. 
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1. I N T R O D U C T I O N  

In bubble columns, the gas phase exists as a dispersed phase in a continuous liquid phase. The gas 
phase moves in one of the two characteristic regimes, depending upon the nature of dispersion. 
The two regimes are: homogeneous and heterogeneous--and these are schematically shown in 
figure 1. 

The homogeneous regime is also called the bubbly flow regime or quiescent bubbling regime and 
occurs at relatively low superficial gas velocities (<  ~ 50 mm/s). This regime is characterized by 
almost uniformly sized bubbles. Further, the concentration of bubbles is uniform in the transverse 
direction. All the bubbles formed at the sparger rise virtually vertically if the bubble size is 
< 1-2 mm and larger bubbles rise with transverse and axial oscillations. For all sizes of bubbles, 
there is practically no coalescence or dispersion in the homogeneous regime. Hence the sizes of the 
bubbles are entirely dictated by the type and design of the sparger and the physical properties of 
the system. 

During the bubble rise, some liquid is carried within the wakes of the bubbles. The liquid thus 
entrained is released when bubbles collapse at the top and flows downwards in the bubble-free 
region. In the case of small bubbles, which rise almost vertically, the liquid downflow is relatively 
well-defined. As a result, a liquid circulation pattern is developed. In the case of oscillating bubbles, 
well-directed liquid circulation does not exist. Indeed, turbulence is generated in the liquid phase 
because of the rapid changes in the path of the downflowing liquid. The liquid phase turbulence 
also arises due to the static pressure fluctuations resulting from the oscillating bubble motion. The 
feeble liquid circulation and the liquid phase turbulence both have the effect of decreasing the 
bubble rise velocity. The extent of the reduction increases with an increase in the bubble population 
(or the gas hold-up). This is the well-known hindrance effect. Due to the hindrance effect, the actual 
bubble rise velocity (VB) in the homogeneous regime is less than the terminal rise velocity (VB®). 
When all the bubbles rise with the terminal rise velocity, the fractional gas hold-up (e~) is given 
by the following equation: 

Vo 
~G = VB~" [la] 

In the homogeneous regime, VB < VB~o and hence the slope of the EG VS Vo curve is > (VB~o)- ~. 
The slope increases with an increase in the gas hold-up as shown by the line AB in figure 2. 
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Figure 1. Schematic representation of the dispersion behaviour in the homogeneous and heterogeneous 
regimes. 

The heterogeneous regime occurs at relatively high superficial gas velocities and is represented 
by the line DE in figure 2. This regime is characterized by the presence of a radial hold-up profile, 
as against a fiat profile in the homogeneous regime. The maximum gas hold-up can occur at the 
column centre, as shown by Freedman & Davidson (1969), or near the column wall as shown in 
figures 3A and 3C, respectively. 

The existence of the hold-up profile in the heterogeneous regime plays a dominant role. Because 
the gas density is negligible, the gas hold-up profile results into a profile of static pressure--as 
shown in figures 3A and 3C. This results in liquid circulation. For instance, in the case of the 
hold-up profile shown in figure 3A, the static pressure in the central region (such as at point B) 
is lower than the pressure in the near-wall region (such as at point A). As a consequence, liquid 
flow is generated from point A to point B, which continues in the upward direction in the central 
region up to point C. Flow reversal occurs at the top from point C to point D and the liquid flows 
in the downward direction near the column wall back to point A. The liquid circulation shown 
in figure 3D can be explained in a similar way. 

The liquid circulation velocities are of the order of 0.3-3 m/s, depending upon the superficial gas 
velocity and the column dimensions. These liquid velocities are 1-2 orders of magnitude higher than 
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Figure 3C. Transverse profiles of the gas hold-up and static 
pressure in the heterogeneous regime of a two-dimensional 

bubble column. 

Figure 3D. Schematic representation of the liquid circula- 
tion in the heterogeneous regime of a two-dimensional 

bubble column. 

the common range of  superficial liquid velocities. Further, the intensity of  turbulence is also much 
higher (3-5 times) than in single-phase pipe flows. Such a highly turbulent liquid circulation results 
in substantial enhancements in the values of  the eddy diffusivities for mass, heat and momentum, 
as compared with the values in a single-phase pipe flow at the same superficial liquid velocity. As 
a result, the rates of  heat and mass transfer and mixing are high in bubble columns. Therefore, 
a complete understanding of  the internal circulation of  the liquid is highly desirable for reliable 
and confident design of  bubble columns. 

The liquid circulation in the heterogeneous regime has a marked influence on the fractional gas 
hold-up. In the upflow region, the concentration of  bubbles is higher than in the downflow region. 
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In this way, the liquid circulation provides a positive displacement to the gas phase in the upward 
direction. As a result, the average bubble rise velocity with respect to the column wall (V0) is much 
higher than the terminal bubble rise velocity. Further, V 0 increases with an increase in the superficial 
gas velocity. Therefore, the fractional gas hold-up, which is given by 

Vo [lb] 
eG V0 

varies as V~, where n < I. This dependence is shown by the line DE in figure 2. It is pointed out 
again that V0 < VB~ is the homogeneous regime. Further, n > I in the homogeneous regime. In 
addition, the bubble size is fairly uniform in the homogeneous regime, whereas a wide bubble size 
distribution is observed in the heterogeneous regime. The bubble size continuously increases in the 
direction of increasing hold-up. The heterogeneous regime is spread over a much wider range of 
VG when compared with the range of the homogeneous regime. Therefore, the heterogeneous 
regime is more commonly encountered in commercial columns. 

The transition from the homogeneous to the heterogeneous regime occurs in the V C range of 
B--D as shown in figure 2. In the homogeneous regime, gross liquid circulation is absent because 
of the flat hold-up profile. At a certain superficial gas velocity (point B), the onset of liquid 
circulation occurs. Once the circulation starts, more bubbles enter the upflow region, as compared 
with the downflow, as it is the path of lower resistance. As a result, a hold=up profile starts to build 
up, which in turn intensifies the liquid circulation. Thus, the build-up of the hold-up profile and 
the liquid circulation are self-propagating and occur simultaneously. 

In the region B-C (figure 2), the liquid concentration is of small magnitude, though there is a 
noticeable change in the slope of the eG--VG curve. In this region the effect of liquid circulation on 
the hold-up is small. However, in the range C-D, the rate of increase of the liquid circulation with 
respect to VG is very pronounced. In other words, for a given change in VG, the increase in the 
liquid circulation drives out bubbles at a faster rate than the rate of bubble generation. Therefore, 
the fractional gas hold-up decreases in the region CD. Nevertheless, the rate of decrease in eG 
reduces with an increase in V G from C to D. At point D, the transition is complete and the 
heterogeneous regime begins. In this regime the liquid circulation velocity varies approximately as 
V~ 39. The rate of bubble generation is proportional to VG. Therefore, the hold-up again starts 
increasing with VG at point D, as shown in figure 2. 

It is very important to note that the behaviour of bubble columns is markedly different in the 
homogeneous and heterogeneous regimes. The dependence of the rates of momentum, mass and 
heat transfer on the design and operating parameters [such as the column width (L), column height 
(H), superficial gas and liquid velocities (VG and VL), liquid density (PL), liquid viscosity (/JL) and 
the interfacial tension (#)] is also substantially different in the homogeneous and heterogeneous 
regimes. Therefore, for the rational design it is important to know the range of parameters over 
which a particular regime prevails and the conditions under which the transition occurs. 

In the past, some criteria have been developed for the transition on the basis of heuristic 
arguments. Joshi & Lali (1984) proposed that the transition will occur when the homogeneity of 
the dispersion is disturbed by the liquid phase turbulence. At the transition point, the r.m.s. 
fluctuating velocity of the liquid phase equals the bubble rise velocity. In the turbulent regime, the 
bubble motion is completely random because of liquid phase turbulence. Good agreement was 
shown between the model predictions and the experimental observations. 

Ranade & Joshi (1987) have developed different criteria for small (<  2 mm) and large (> 2 ram) 
bubbles. The small bubbles rise upwards without any oscillations. The liquid carried upwards in 
the bubble wakes is released at the top liquid surface which then flows downwards. The downward 
liquid flow hinders the bubble rise. It was proposed that the transition will occur when the bubble 
rise velocity equals the downward velocity. Using the liquid phase mass balance and the wake 
volume given by Kumar & Kuloor (1972) (I 1/15 times the bubble volume), the following criterion 

was obtained: I I 

"i'5 8GC 
= 1. [2] 

11 
1 - e o c  - ~ e c c  
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The preceding equation predicts a transition value of 0.42 for small bubbles. The small bubbles 
are formed and preserved in a non-coalescing medium. This value is in agreement with the 
experimental findings of Ocls et  al. (1978), Maruyama et  al. (1981) and Koetsier et  al. (1976). It 
may be noted that the maximum possible hold-up is 0.52 using the cubic lattice structure. 

The large bubbles rise with oscillations. The resulting oscillations in the gas hold-up generate 
liquid phase turbulence. The scale of turbulence in the homogeneous regime is 0.5dB (Joshi 1983). 
Therefore, the possibility of bubble coalescence will increase when the distance between the bubbles 
is <0.5dB. Using this value for bubble clearance and the cubic lattice structure, the value of the 
critical hold-up works out to be 0.16. This is in fairly good agreement with the experimental values 
of 0.15-0.2 reported by Deckwer (1977) and Whalley & Davidson (1974). It is to be noted out that 
Taitel et  al. (1980) observed enhanced coalescence when ec>0.18. This value also agrees 
favourably with the value of 0.16 proposed by Ranade & Joshi (1987). 

Yamashita & Inoue (1975) and Maruyama et  al. (1981) have reported experimental results on 
the transition gas velocity. These studies are useful for checking the validity of mathematical 
models. The aim of the present work is to develop a transition criterion in a two-dimensional bubble 
column on the basis of linear stability theory. The derivation of the stability criterion is presented 
in the next section, followed by a comparison with the experimental data on transition. The 
criterion is also extended for fluidized beds, including gas and liquid fluidized beds. 

2. M A T H E M A T I C A L  M O D E L  

In this section a criterion is developed for the case of a two-dimensional bubble column. A 
schematic diagram of the column together with the coordinate system is shown in figure 4A. 
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Initially a model will be developed for the case of semibatch operation, where the gas phase is 
continuous and the liquid phase is batch. The following assumptions are made: 

(1) The gas and liquid are considered as incompressible fluids, whereas the dispersion 
is considered compressible. The compressibility is accounted for by the spatial 
variation of the fractional gas hold-up, eG. 

(2) The gas is massless. 
(3) For simplicity, the liquid flow is considered to be laminar. 

The continuity equation and the momentum balance for the liquid continuum are as follows: 

t3t {pL(1 -- e6)} + ~" LOL(1 -- eG)~ = 0 [3a] 

and 

pL(1-  t3G)I~q-(~r'~)~71 =--gL~p + p L ( 1 -  go)g + V"~L +fez ,  [3b] 

where f is the interaction term and is given as 

f = (1 - eG)eG(PL -- Pc)g; 

since for a gas-liquid system PG "~ PL, f can be approximated as 

f = (1 - ea)eGpLg- 

Similarly for the gas continuum, the continuity equation is as follows: 

0eG ~- + ~7. (~ VG) = 0, [3c] 

where V and ~7 G are the velocity vectors for the liquid and gas phases, respectively, and PL is the 
liquid density. 

Gas bubbles are considered to be moving up in the vertical direction with a velocity Vs(eG) 
relative to the liquid phase, thus: 

V G = ~7 - Vs (en) g. [41 
g 

For the two-dimensional column with 

and 

Further, we assume that L ~> d and H 

the coordinate system shown in figure 4A, we have 

x-componen t, 

[5a] 

[5b] = -g~z 

>> d. Substitution of [4] and [5] into [3a-c] gives: 

~G ~G ~G (~U (~W) = 0; [6] ot +V-~x+W~z -(l-~°) ~ + ~  

p L ( 1 - - e G ) - ~ + W ~ z + V ~ x  =--(1--~G)~X+#OXX 2(1--aG)~X +/~yy ( l - -eG)~y 

a{ (0~ Ow,) 2 o{o +O(l_~o)w} 
+"gzz ( l - .o )  N+~x)~-~j.Uxx ~x(1-.o)v 0z 

and 

z-component, 

pL(I--eC) "~ -+W~z  +V~x = - - ( 1 - - e O ) ~ z - - p L ( 1 - - e G ) g + f + # ~ Z  2(1--~O)~Z 

0 [ J ~ ° w  o {~ (l-~o)v O-~o)w}. 

[7] 

[81 
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Equation [3c] becomes 

&Gc~__.f +v~xC%° a~o (c3v~Wl~x + ~ z  +(w + Vs+eov~)T- z +~o =0, [9] 
\ / 

where v and w are the components of the liquid velocity in the x- and z-directions, respectively, 
and V~ = d Vs/deo. 

Now let us introduce the dimensionless variables defined below: 

v w Vs(~o) z 
V = - -  w =  - -  Vs ( ~ )  = - -  z = - 

VB~'  VBoo' VB~ L 

x H tVBoo LVBooPL X = -  h = - -  z = - -  R e = -  
L' L '  L ' ~ ' 

Y = Y P = P G = __gL. [10] 
L' PL V~'  VL' 

where VB~ = Vs(eo = 0) and /~ =/~M +/~v (/ZM and PT are the molecular and eddy viscosities, 
respectively). 

Substitution of [10] in [6]-[9] results in the following dimensionless equations: 

. wo o (ov ow : o 
ca--- ~- + y~--~ + OZ + (1 - ~G) ~-~ + c3 z ] , [11] 

( l - ~ o )  N +  oz+V-g-2 =-(1-~o)~-~ Re(OX (1-~o)~--~ 

~ (  OV) 0 ( dV) 1 d ( d  d )}  
+ (1--eo)~-I~ +~-~ (I--~o)~- ~ + ~ - ~  - ~ ( l - - e c , ) V + - ~ ( 1 - - e G ) W  , [12] 

,(caW+ ¢9W caW (gP _ ec)2 + ~___d {d__~ ((1 _ ~o) ..~_) (1 - o ~-~-, W - ~ - +  V - ~ - )  = --(1 -- .o)~-~ + G(I 

+~-~-y((I--SG)~-W-)+~--X(( 1 8 G ) ~ - ) + ~ - ~ I  63 ( ~ X ( I _ ~ G ) V +  c3~_~ 

and 
C3~G V~3~o c~8 o (c3V OW) 
d--~-+ 0 x + [ W +  Vs+~oV~(eo)]~-~+ec ~ + - ~ -  =0. [14] 

2. I. Hydrodynamic Stability Analysis for a Semibatch Bubble Column 

Consider a rectangular column of width L and breadth d (L >> d) having a perforated plate type 
of sparger (N orifices of diameter do each, the thickness of plate being 1). Let the ratio of the column 
cross-sectional area to the gas sparging area be R. The pressure drop across the gas sparger is 
represented as the sum of the effect of both viscous and turbulent resistance to flow and is expressed 
a s  

Po - p(X, O) = kv Vo + k-r V~, [15] 

where Po is the pressure below the sparger and p(x, O) is the pressure at the column bottom and 
above the sparger plate; kv and kv are the proportionality constants, V~ is the superficial gas 
velocity and is given by the following equation in the homogeneous regime: 

Vo = Vs (~o)~o.  

Let us introduce dimensionless variables as follows: 

Vo k~ k:r 
VBoo' V° = Kv = pL VB® KT = --PL 

Po p (X, O) 
PG = ~ P(X, 0) = - - .  [16] 

PL V~o~' PL V~o~ 
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Therefore, [15] in dimensionless form becomes 

/to - P (X,  0)  = Kv F'o + K-r ~ .  [17] 

As the terms accounting for viscous dissipation are negligible in comparison with the inertial 
terms, this is a potential flow problem and zero relative velocity conditions at the wall are redundant 
and only the conditions of zero normal velocity at the walls are used. The boundary conditions 
are: 

Further, at Z = 0: 

and 

x =  o, v = o; [18.1] 

X = I ,  V = 0 ;  [18.2] 

Z = 0 ,  W = 0 ;  [18.3] 

Z = h ,  W = 0 .  [18.4a] 

PG -- P(X, O) = Kv VG + K-r F'~. [18.4b] 

According to the theory of  hydrodynamic stability analysis, infinitesimally small perturbations are 
superimposed on the variables in the initial steady state and their transient behaviour is studied. 

The variables in the perturbed state are as follows: 

% = ec0 + fs~,  

V =  Vo+6V ' ,  

w =  Wo + ,~ w '  
and 

[19.1] 

[19.2] 

[19.3] 

[19.4] 

and 

eG (X, Y) = eo0 = const 

P ( X ,  Z )  = Pat,, 
PL V ~  
- -  + G ( h  - -  Z ) ( 1  --  e60) 

OV' 
(1 --  ego)  0z 

and 

OW" 
(1 - ec, o) O'r 

get the following set of  equations: 

a~ (or' ~w"~ 
t~--~- + (1 - ego) ~ -  + c~Z ,] = O, [21] 

~e'G , O~c {OV' (?W')  
- -  = 0,  [22] a, +{Vs+~°Vs)T~ + ~°°l,-S~ +72- 

~p, (1-~o0)V~2v ' ~2v, ~v, 1~ /~v ,  ~v,)] 
- -  = - ( 1  - ec .o ) -~  -t R.e L ~ 5 -  + O-YY + ~ Y  + 3 0-X ~,~X- + - ~  - [23] 

OP' (1 - eoo) 
- -  = - ( 1  - ea0) - ~ -  -~ R e  

[-OzW ' dEW ' OzW ' 1 ~ (OW'  OW'Y-] 
x J _ y V + T V + 7 2 r + ~  \ ox +-~-)J + 2s(1-~Lo),~. 

[20.1] 

[20.2] 

= Po(X, Z) .  [20.3] 

Substituting [19.1]-[19.4] into [11]-[14] and retaining only those terms which are linear in 3, we 

[24] 

P = P o + ~ P ' ,  

where 6 is the smallness parameter. 
The initial steady-state flow is the homogeneous flow regime (i.e. uniform bubbly flow regime) 

and is represented by the following equations: 

v0= w 0 = 0 ,  
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Since V and W have profiles in the y-direction, some averaging procedure will be employed for 
that direction. 

As L >> d and H >> d, the profiles of v and w in the y-direction can be represented as 

V(x,y,z,  t ) =  Vm~,(x,z, t ) ( 1 - ~ ) "  [25a] 

W(x,y,z ,  t )= Wmu(X,Z,t)(1 2 i f ) ' ,  [25b] 

where Vm~ and W ~  are the velocities in the central plane, y = 0. When the flow is turbulent n 
has the value of 1/7. The value of n can be selected to represent any other velocity profile, including 
viscous flow. It is emphasized, however, that the value of n is not important as far as the transition 
criterion is concerned. This aspect will be explained later. 

The average values of these components can be obtained as 

fall2 V dy 

V(x, z, t) = J -/Id~2 [26a] 

J -dlZ dy 
and 

fdn W dY 

W(X, Z,  "c) = d -d/2 [26b1 

f ~/2 dY 
-d]2 

Using [25a,b] and [26a,b] in [21]-[24], the momentum equations can be simplified to a great 
extent. Details of  this simplification are given in Appendix A. The simplified equations are as 
follows: 

&'~ /eV" ef t"\  
&r + (1 - ec'°)~-O-X + - ~ - )  = O' 

&6 _ -, e ~  (eF '  e f t ' )  
e, + ( vs + s~° v~ ) T~ + ~° - ~  + - ~  = 0 ,  

e P ' _  eP' n i7' 
dr eX Re 

and 
eft" eP '  , ,1 if,,. 
e----~- = - e--Z + 2ae G - 

The solutions to [27]-[30] are represented in the following forms: 

V'(X, Z, ~) = V'(X, Z)e ~', 

ff"(X, Z, T) = ff"(x, Z)e ~', 

P'(X, Z, ~) = P'(X, Z)e ~' 

and 

[27] 

[28] 

[29] 

[301 

[31.1] 

[31.2] 

[31.3] 

e'(X, Z, z) = g3 (X, Z)eXL [31.41 

Substituting [31.1]-[31.4] in [27]-[30] and putting 2 = 0 gives the equations determining the 
parameters at which the transition from the homogeneous to the heterogeneous regime occurs, 
these equations are called neutral motion equations and are as follows: 

017' Off" 
e-T =0, [32] 

[33] 

UMF I $/~-F 
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and 

dP' + ~ V' = 0 [34] 
c~X Re 

aP' 
2Gg'G + ~ fie, = O. [35] 

aZ 

The linearized boundary conditions for [32]-[35] are obtained using [18.1]-[18.4] in combination 
with [19.1]-[19.4] and retaining only those terms that are linear in ft. The boundary conditions are 
as follows: 

and 

where 

X = 0 ,  V '=0 ;  [36.11 

X = 1, V' = 0; [36.21 

Z = h, fie' = 0; [36.3] 

Z = 0, fie' = 0; [36.4a] 

Z = 0, g~ = ---fl P; [36.4b] 
0t 

~'= es + ~ o  e~ 
and 

1 #= 
Kv + 28c, o Kr Vs" 

Let us introduce the stream function ~, defined as follows: 

a~v d~v 
F ' = - - -  f ie '=--  

dZ '  a x  

Combining [32], [33] and [37] we get 

[37] 

and combining [34], [35] and [37] we get 

~8 G 
~ = 0; [38] 

Ree \~--~ + d Z ' )  - 2G = 0. 

As ~ # 0, from [38] we have 

i.e. 

o r  

Substitution of [36.4b] in [41] gives 

a8 '~ 
- - ~ 0 ~  
aZ 

[39] 

8~(X, Z) = g'G(X, O) [40] 

a~'~(x, z) ae'G(x, o) 
OX OX 

a~'G(x, z) # aP(x, o) 
&X ot ~ X  

Equation [34] at the boundary (X, 0) takes the following form: 

aP'(x, o) = _ ~_. P ' ( x ,  o)  
8X Re 

o r  

aP'(x, o) = ,1 o~(x ,  o) 
3X Re Oz 

[41] 

[42] 

[43] 
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From [42] and [43], we get 

o~& (x, z) 
OZ 

Substitution of [44] in [38] gives 

Re + aZ 2: + 2 

or 

/~ ,7 a~,(x,o) 
~t Re  t~Z 

6/~ ,1 ~ ( x , o )  
- - ~ 0  

~t Re ~ Z  

[44] 

~ 2  0~,2 G~ ~ ( X ,  0) 
c~X----- ~ + ~ - ~  + 2 • - - ~ Z  = 0. [45] 

Two points may be emphasized at this stage. First, is that the parameter ~/does not remain in 
[45]. It can be easily shown that the same result can be obtained even if [25a] were a parabolic 
profile, such as 

Secondly, the value of Re is also not important. Therefore, the values of the molecular (~M) and 
eddy viscosities ( ~ )  are not important. 

Equation [45], along with its boundary conditions, presents an eigenvalue problem for the 
parameter A- - (Gp) /e .  The lowest eigenvalue is the value at which the transition from the 
homogeneous to the heterogeneous regime occurs. Using the method of separation of variables, 
the final criterion is given as follows (details of the method are given in Appendix B): 

2Gfl = it sinh(~h) [46] 
cosh(~h) -  1 " 

The homogeneous regime would prevail as long as the left-hand side (LHS) of the above equation 
is less than the right-hand side (RHS) and the transition to the heterogeneous regime would occur 
as the LHS becomes greater than the RHS. 

2.2. Stability Analysis for Continuous Operation 

In this case, both the gas and the liquid are introduced and removed continuously. The flow of 
the two phases may occur in a cocurrent or countercurrent manner. Here the initial steady-state 
conditions are as follows: 

8G = eG0 = const, [47.1] 

v = 0, [47.2] 

w = w0 = const [47.3] 
and 

P,, .... - Z)(I - ego), [47.4] e -- e(z) = PL V~---'-: + (~Ch 

where w0 is the true velocity of the liquid phase. The boundary condition at the bottom depends 
upon the way in which the liquid is introduced/taken away. Consider the bottom design given in 
figure 4B. 

The liquid phase pressure drop consists of three parts: that due to the viscous and turbulent 
modes of friction across the sparger and that due to the acceleration of the liquid as it flows past 
the sparger region. 

The liquid phase pressure drop can be written as follows: 

2 /P we P PL--p(x,O)=kvLVL+kTLVL+~ 7 Z V~/, [48] 

where kvL and kTL are proportionality constants, p = PL (I -- ~) is the dispersion density and VL 
is the superficial velocity of the liquid in the column, where 

VL ----- w(l -- ~). 
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Let us define the following dimensionless variables: 

kx L PL 
kvL 2 W PL 

K V L - - - - ,  K T L - - - - ,  W =  PL = ~ .  
PL VBoo PL VBoo' PL V2oo 

Substitution of [49] into [48] gives 

PL -- P ( x ,  0) = KvL W(1 - to) + W2[KTL(I -- tO) 2 + ~1 -- eG)]. 

In the perturbed state, the system variables are: 

[491 

[50] 

to  = too + 6t'G, [51.1] 

v =  6v ' ,  [51.2] 

W =  Wo + 6W" [51.3] 

and 

P = Po + 6P' .  [51.41 

Substituting [51.1]-[51.4] in [11]-[14] and retaining only those terms which are linear in 6, we get 
the following linearized equations for perturbations. Further, averaging in the y-direction and 
following a procedure similar to the semibatch analysis we get the simplified linear equations as 
follows: 

&b,O,r &3 /O~" ~Off") + W 0 - ~  - (1 -- to0)t-0-- ~ + / = 0, [52] 

0---~- + W o ~ -  + (Ps + ~oo Vs)-~-  + too~-,~ + OZ j = 0 ,  [531 

0-- '  F<gV' (n + 1) 2 ff'0-z-~!0V'l : OP" . 
L 0, + (2n + 1) az; 3 OX Re 

p, [54] 

and 

I Off" (n + 1) 2 _ Off"]  0P' 2Ge~ - ~ if". [55] 
W + (2.  + 1--------5 Wo 7 - i  = - o-2 + Ke 

Substituting of [51.1]--[51.4] into [50] and linearization gives 

P'  = {KvL(I -- t~o) + [K~L(1 -- t~o) 2 + ~ l  -- t~o)l} if" -- [ ff'0{/Cv~ + ff'012,~:~(l -- ~ )  + ½]}let. [56] 

The boundary condition for the gas sparger is the same as in the case of a semibatch bubble 
column; the linearized form of this is as follows: 

- P '  = [Kv + 2KT(ff'0 + Vs)ec, o]( f f 'oVs+tcoV's )g~+tc ,  o [ K v + K x ( f f ' o +  Vs)]ff". [571 

Let us define the following parameters: 

B = {KvL(l -- Coo) + 2 ff'o[KvL(1 - ec, o) 2 + ½(1 -- tc, o)]}-', 

c = Wo{rvL + ff'o[2K~L(1 -- ~o)  + ½]}, 

~ =  {[Kv + 2K~(ff'o + G S ~ ) l ( f f ' o +  G + ~ o G ) }  

[58.1] 

[58.21 

[58.3] 

[58.41 
and 

[59.11 

F =  [Kv + 2eGoKT(Wo + Vs)lec, o. 

Substitution of  [58.1]-[58.4] into [56] and [57] gives 

if" = - B (P"  - C e ~  ) 

and 

g~ = - E (P '  + Fife'). [59,2] 
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From [57.1] and [57.2] we have 

a n d  

where 

if" = - sP" [6o1 

g3 = - QP', [611 

B(1 + EC) E(1 - BF) [62] 
S =(1  + BECF)' Q =(1 + BECF)" 

By using the normal mode of  representation for all perturbation variables, as in [31.1]-[31.4], 
arid putting 2 = 0, we get the neutral motion equations as follows: 

- -  + - -  - -  = 0 ,  [ 6 3 ]  
OX OZ (1 - eoo) OZ 

, 0~o /OY" Off" I 
(Wo+ Ps+ ~o ~;) ~ + ~oo~T ~ + - ~ - .  =o, [64] 

(n + 1)2 017' ~P' q 17' [65] 
(2n+1)~°~-~= 0x Re 

a n d  

(n + l )  2 0l~/ '  0J I$' " '  ~ I~". [66] 
~ n - 3 / ~  I~0 ~ -  = - 0--~ + 2G~6 - R e e  

The corresponding boundary conditions are as follows: 

X=O, F" = 0; 

X =  1, ~ ' = 0 ;  

Z=h, P' =0 ;  

and 
z=o, ~ = - s P ,  F'=o, g~=-QP'. 

Equations [63] and [64] together give 

[67.1] 

[67.2] 

[67.3] 

[67.4] 

ao~-~ =0, [68] 

where 

~o 
- -  + es + 8~o ~s. 

a° = ( 1  - 8 o o )  

If  a ~ 0 then ~ --0 and [63] becomes 

~ '  o~ '  
0X + ~ = 0. [691 

Introducing the stream function ~,  we get 

where 
( n  + 1) 2 

a =  I~'0. (2n + 1) 

[70] 
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The boundary conditions for ~ are: 

X =  0, ~-~ = 0; [71.11 

X =  1, O-Z =0 ;  [71.2] 

027  j r/ O ~  
Z=h, a ~--Z-~-~- R---~ 0---Z =0 ;  [71.3] 

and 

Z - - 0 ,  

Let us define 

[71.4] 

O~ + q ~. [72] 
¢~ = a ~ - ~  Re 

Equation [72] suggests the following form for ~:  

~ = exp( ~ea)[ f~ lexp(~ea)OdZ+cl .  [73] 

Equation [73] along with the boundary conditions [71.1]-[71.4] provides an eigenvalue problem. 
Proceeding in a manner similar to section 2.1 we obtain the criterion for transition for different 
modes. The earliest transition occurs for the lowest value of n, i.e. n = 1, and thus we have the 
stability criterion: 

2GO ~ S - Re = n coth(rch). [74] 

As in the case of semibatch operation, the regime would be homogeneous as long as the LHS 
of the above equation is less than the RHS and a transition to the heterogeneous regime would 
occur when the LHS becomes greater than the RHS. Two special cases can be considered here. 

Case 1 
The pressure drop across the liquid sparger is very much less than that caused by its acceleration 

over the gas sparger region. This case corresponds to the situation when the column is connected 
at its bottom to a huge reservoir of liquid. Mathematically this can be written as 

Under limiting conditions this means that, kvL ~ 0 and krL--' 0 and the parameters B and C are 
defined as follows: 

1 t 2 I 

B = I4"0 ec-0 (1 - eG0)' C if'0 (ec~ -- i)- [76] 

The parameters E and F are defined as in [58.3] and [58.4]. The stability criterion is given by 
[74]. 

Case 2 
The pressure drop across the liquid sparger is sufficiently large to ensure uniform liquid flow into 

the column, irrespective of the pressure perturbations in the column. Mathematically this means 
that 
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Under these limiting conditions, we have 

kvL'-¢ oO and kTL--* O0. [78a] 

Also, 
W'(x, 0) = 0, hence S = 0. [78b] 

Using the above conditions in [58.1], [58.2] and [62], we get 

B ~ 0 ,  C--,o% t h e r e f o r e Q = E .  

Under these conditions, the stability criterion becomes as follows: 

G{[Kv + 2KTSc,0(ff'0 + ITs)] (if'0 + its + e~  ~')}-~ = ~ coth(~h). [79] 

2.3. Estimation of the Model Parameters 

In order to use the stability criterion developed in the previous section, we need to know the 
values of  the pressure drop across the sparger and the bubble relative velocity. 

2.3.1. Estimation of the relative velocity 

The relative velocity is defined by the following equation: 

v~ vL 
Vs . . . .  [80] 

eG ~L 

The value of  the relative velocity is less than the terminal velocity. Richardson & Zaki (1954) 
have reported the following relationship between Vs and Vnoo : 

Vs(~c) = VBoo (1 -- e~) m. [81] 

The terminal rise velocity, VBoo was estimated using the correlations given by Clift et al. (1978). 
The bubble size (formed at the orifice, dB) was estimated using the correlation developed by Kumar 
& Kuloor (1972). 

2.3.2. Estimation of the pressure drop across the gas sparger 

The pressure drop across the gas sparger is expressed as follows: 

AP = kv VG + kz V~. [82] 

The two terms on the RHS represent the contributions due to the viscous and turbulent flow 
resistances. 

In order to estimate the values of kv and kT in [82], the pressure drop was measured in a 
155 x 10 x 1000ram two-dimensional column. A perforated plate was used as a sparger with a 
single row of holes. The superficial gas velocity was varied in the range 10-100 mm/s. The hole 
diameter and the number of  holes were varied in the range 0.5-2 mm and 5-15, respectively, so 
as to obtain the area ratio (column cross-sectional area to hole area) in the range 100-2000. The 
clear liquid height in the column was 500 mm. The pressure drop across the sparger was measured 
by subtracting the hydrostatic liquid head from the observed total pressure drop. The thickness 
of  the sparger plate was found to have no influence on the pressure drop. The following correlation 
were obtained with a standard deviation of  5%: 

kv = 0.98R 1.5 [83] 

and 
kT = 0.30R 2. [84] 

3. R ESULTS AND D I S C U S S I O N  

3. I. Discussion on the Mathematical Model 

The sup¢rficial gas velocity (Voc) at which the transition from the homogeneous to the 
heterogeneous flow regime occurs depends mainly on the design of  the gas sparger and the physical 
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properties of the system. In order to understand the effect of  the above parameters on VGC, plots 
were constructed on the basis of  the stability criterion, [46]. The effects of  the number of  orifices, 
the orifice diameter, the bubble rise velocity and the gas hold-up index on Vc, c were studied. In 
the case of  continuous operation, the effect of  the superficial liquid velocity on eGc and VGc was 
studied. While studying the effect of  the orifice diameter and the contribution of  the viscous flow 
resistance on eGc and VGc, the gas hold-up index was taken as 1.4. 

3.1.1. Semibatch operation 

The stability criterion is given by the following equation: 

2 Gfl _ rt sinh(lrh) 
cosh(z~h) - 1 ' 

where 

and 

[85] 

G =  g L  
V2 , [861 

= Vs + ego Vs [87] 

1 

fl - Kv + 2ecoKx Vs" [88] 

As discussed in section 2.1, a homogeneous flow regime can be maintained as long as the LHS 
of  [85] is less than the RHS. For  the aspect ratio (h = H / L )  > 1, the RHS is a constant quantity. 
The LHS depends upon the design of  the gas sparger and the physical properties of  the liquid. The 
role of  these parameters will not be discussed systematically. 

Effect o f  sparger resistance. The sparger resistance is represented by [83] and [84]. The sparger 
resistance increases with an increase in the area ratio (R). The effect of the area ratio on ~cc is 
shown in figure 5. It can be seen that ~cc increases with an increase in R up to about 600 and then 
ec, c levels off. The limiting value of  ~Gc can be obtained as R -* ~ .  Under these conditions kv and 
kx -* ~ and hence/3 --. 0. In order to keep the RHS of  [85] finite, = should tend to zero. With this 
condition, we get 

1 
~Gc = [89] 

m + l  

For  a typical value of  m = 1.4 (Richardson & Zaki 1954), the value of eGc works out to be 0.42. 
In the published literature, the maximum value of  the hold-up (VL = 0) has been reported by Oels 
et al. (1978) and is in the range 0.42-0.48. The experimental value agrees favourably with the 
limiting value predicted by [89]. 

The effect of  the area ratio on the transition gas velocity VGc is shown in figure 6. It can be seen 
that the value of  VGc increases with an increase in the area ratio. 

The effect of  the hole sized do on eGc and VGc is shown in figures 5 and 6, respectively. It can 
be seen that the values of  eGc and VGc decrease with an increase in do. 
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Effect of the bubble rise velocity. Liquid viscosity, surface tension and the liquid density govern 
the bubble rise velocity. It was thought desirable to study the effects of physical properties through 
the value of VBoo. The relationship between physical properties and bubble size has been given by 
Kumar & Kuloor (1972) and the relationship between physical properties and the bubble rise 
velocity (for a given size) has been given by Clift et al. (1978). 

The effect of the bubble rise velocity on V~c is shown in figure 7. It can be seen that the value 
of Vc, c increases with an increase in VB~. 

Effect of the hold-up parameter. It was discussed in the introduction that the actual bubble rise 
velocity is lower than the terminal value and this hindrance effect increases with an increase in the 
gas hold-up. With the hindrance effect, the relationship between the superficial gas velocity and 
the fractional gas hold-up is 

vo 
- co(1 - co)  ~. [90] 

vB~ 

The hold-up parameter m depends upon the bubble Reynolds number. The effect of m on Vcc 
is shown in figures 8(A) and (B) for hole diameters of 0.5 and 1.5 mm, respectively. It can be seen 
that at a constant R the value of Voc increases with a decrease in m. 

3.1.2. Continuous operation 

The liquid flow is either cocurrent or countercurrent to the gas flow. Liquid is introduced with 
the help of a distributor. Two limiting cases of the distributor resistance (kvL) are considered: 
kvL = oO and kvL = 0. For the first case, the stability criterion is given by [79]. Substitution for 2 .  
gives 

2G {[rv + 2KT(W0 + Vs)eGo] (W0 + Vs + ego V~)}-' = 7.74 cosh(7.74h). [91] 
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The results are shown in figure 9(A) for cocurrent (VL = + 10 and + 25 mm/s) and countercurrent 
( -  10 and - 2 5  mm/s) flows. It can be seen that the value of VGc increases with an increase in the 
cocurrent liquid velocity, whereas, it decreases with an increase in the countercurrent liquid 
velocity. These predictions agree with the experimental observations of Oels et al. (1978). 

The effect of  liquid velocity can be qualitatively explained as follows. In the heterogeneous 
regime, liquid circulation is developed which is upward in the central region and downward in the 
annular region. With cocurrent liquid upflow the downward annular flow is restricted, resulting 
in a reduction in the liquid circulation. Therefore, the cocurrent liquid flow delays the transition. 
This countercurrent liquid flow has the opposite effect. 

When the liquid distributor resistance is zero (kvL = 0), the results are shown in figure 9(B). In 
this case also, the transition is delayed with an increase in the cocurrent V L. However, the increase 
in Vcc is less for the case of kvL = 0 as compared to the case of kvL = ~ .  When kvL = 0, the 
disturbances at the bottom grow because of  the absence of the possible dampening effect of the 
liquid distributor. For this case, the homogeneous regime is not possible when the liquid flow is 
countercurrent. 

3.2. Compar&on with Experimental Data 

Yamashita & Inoue (1975), Maruyama et al. (1981) and Chisti (1989) have measured the values 
of  the critical superficial gas velocity for transition. The details pertaining to the experiments are 
given in table 1. The comparison between the model predictions and experimental observations is 
shown in table 2. It can be seen that the agreement is favourable over a wide range of column width, 
hole diameter and number of holes. 

It has been pointed out earlier that the maximum possible hold-up in the homogeneous regime 
is 42%. This prediction compares favourably with the experimental observations of Maruyama et 
al. (1981) and Koetsier et al. (1976). 

In the case of fluidized beds, the particles of commercial importance and systems which have 
been studied employ particles which are < 0.1 mm. In these cases, the sparger resistance can be 

Table 1. Details of the reported experimental data (system: air-water) 

Investigator(s) 

Column 
Column dimensions 

Orifice N or Sparger 
L d H dia (area thickness 

(m) (m) (m) (mm) ratio) (mm) 

Chisti (1989) 0.46 
Maruyama e t  al. (1981) 0.3 
Yamashita & Inoue (1975) 0.3 

0.3 

0.155 1.5 1 50(1915) 2 
0.01 0.2 to 0.6 0.2 29 (3921) 20 
0.01 1.07 0.3 29 (1463) 0.7 
0.01 1.07 0.5 29 (527) 0.7 



TRANSITION CRITERIA IN BUBBLE COLUMNS 723 

Table 2. Comparison between the model predictions and experimental obser- 
vations (system: air-water) 

voc(rnm/s) 

N or Reported Predicted 
Investigator(s) (area ratio) value value 

Chisti (1989) 50(1815) 63.4 52.2 
Maruyama et al. (1981) 29(3921) 39.1 46.6 
Yamashita & Inoue (1975) 29(1463) 50 46.6 

29(527) 44 44 

assumed to be infinite, and the limiting case defined by [89] can be assumed to hold good for these 
systems. In the case of fluidized beds, the limiting case is given as 

1 
es = - - ,  [92]  

m 

where e, is the particle phase hold-up and m is the Richardson-Zaki index. Tables 3A and 3B show 
the comparison for liquid and gas fluidized beds, respectively. 

3.3. General Remarks 

1. From figures 5-9 it can be seen that the value of Vc, c increases with an increase in the area ratio. 
The area ratio increases either by decreasing the hole diameter or decreasing the number of 
holes. In figures 5-9, increasing R generally means a reduction in the hole diameter. A reduction 
in the number of holes may result in uneven sparging. Under these conditions, the gas jets issuing 
from the holes may create a local circulation pattern which can grow to result in the 
heterogeneous regime. Under the limiting condition of a single hole, it is known that the 
homogeneous regime cannot be observed--even at very low superficial gas velocities. 

2. The transition also depends upon the coalescing behaviour of the liquid phase. Any coalescence 
will result in a higher local hold-up and generate local liquid circulation. Such a disturbance 
can grow to give the heterogeneous regime. The coalescence also results in higher bubble rise 
velocities and the value of 8c, c will be lower, even though the value of VGc remains the same. 
This particular situation was observed in many studies reported in the literature. 

Table 3A. Comparison of experimental data with the model predic- 
tions (bounded bed analysis); liquid fluidized systems (Gibilaro et al. 

1986) 
° 

Emb 
dp ps PL flL x 10 -3 

~ m )  0cg/m 3) (kg/m 3) (Pa-s) Expt Predict. 

165 8710 1000 1.25 0.74 0.726 
165 8710 I000 0.75 0.66 0.676 
82.5 8710 1000 1.25 0.75 0.742 
82.5 8710 1000 0.75 0.72 0.734 

°Voidage at which the transition occurs. 

Table 3B. Comparison of experimental data with the model predic- 
tions (bounded bed analysis); gas fluidized systems 

° 

£mb 
dp p~ Po .u~ × 10 -5 

(mm) (kg/m 3) (kg/m 3) (Pa-s) Expt Predict. 

(i) Jacob & Wiemer (1987) 
44 850 14.20 1.66 0.765 0.752 
44 850 42.61 1.66 0.767 0.761 
44 850 71.01 1.66 0.798 0.782 

(ii) Mutsers tf  Rietama (1977) 
39.7 920 1.167 1.8 0.776 0.782 
78 920 1.167 1.8 0.742 0.765 

103 920 1.167 1.8 0.701 0.732 

°Voidage at which the transition occurs. 
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4. CONCLUSIONS 

(1) The transition from the homogeneous to the heterogeneous regime occurs when the conditions 
given by the following expressions are satisfied: 

semibatch operation, 
gL 

V ~  rc sinh(~h) 

(Kv + 2eGoKT Vs)(1 -- ~G0) m- 1[I -- (m + 1)e~] < cosh(nh) - 1 ; 

continuous operation, 
gL 

v~ 
[Kv + 2e~oKv(Wo + Vs)] (Wo + Vs + eco V~) 

< n coth(nh). 

(2) Good agreement was observed between the predicted and experimental values of the critical 
gas velocity over a wide range of hole diameter and the number of holes. Further, the maximum 
value of the predicted critical gas hold-up was 0.42, which agrees favourably with the 
experimental observation. 

(3) Cocurrent liquid flow delays the transition, whereas countercurrent flow promotes an early 
transition. These predictions are known to agree with the experimental observations. However, 
experimental data are needed for two-dimensional columns. 

(4) The transition criterion was found to be independent of the viscosity. 
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APPENDIX A 

Substitution of [26a, b] in [25a, b] gives 

V(X, Y, Z, z) = n + 1 V(X, Z, z) 1 - [A.lal 
Z n 

and 
+ 1 ( W(X, Y , Z , z ) =  n ff '(X,Z,z) 1 - [A.lb] 

Z n 

This averaging in the y-direction also holds for the perturbation variables. Now, substituting 
[A. 1 a, b] in [21]-[24] and integrating each term w.r.t. Y from - d / 2  to d/2 (assuming that the value 
of % does not depend on y) and dividing throughout by d, we get the following equations: 

and 

' o f f " \  
Oe----9-c + ( 1 0 z  - 8 c ' ° ) ( ~  + - - ~ )  =0 '  

& +(G+~c,o + OZ) - -  v l )~2  . ~ - ~  + =o, 

or  i o  <oe' oe' - I 
( I  - 8c, o )  0"r . . . .  (I - ~o) ~ + R--T-- Lox' + " v  ~ + ~ ~ , ~  + o x / j  

Off" 0P' (1 - ego) 
(1 - tc, o) & = - (1  - ec, o ) ~ -  4 Re 

FO2ff" " ff.,O2ff" ' 1 d (Off" 0ff"\-I 
× 7 2 r  + ~ \ T £  + 7 y ) j  + 2G(' -'~o)';-, 

where t/is given by 
n(n + I)L 2 

' / =  d 2 

Since L >> d and H >> d and for a typical value of n = 1/7 and Ir/I >> 1, we have 

02 , i o (0r 0ff"  
I'117'1 "> -b-~ + -~-  + g b-Z \~--X + a z )  

and 

I "~ l '>T2- r+-~-  g ~ \ - ~ +  o z f  
As a result of this simplification [A.4] and [A.5] take the following form: 

017' 0P n ~, 
OT dX Re 

and 

~ =  ~-~ +2G~o-k- ~ 

[A.2] 

[A.3] 

[A.4] 

[a.5] 

[A.6] 

[A.7] 

[A.8] 
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A P P E N D I X  B 

Let us assume the following form for ~:  

'/' (X, Z) = X(X). Z(Z). 

Using [B.1] in [45], we get 

and 

d2X 
dX z = --k2X 

d2Z 
dZ 2 2~Z = - D ,  

where 21 is a constant of separation and D is given by 

D = 2 Gfl dZ(0) 
dZ  

The boundary conditions for [B.2] and [B.3] are: 

X = 0 ,  X =0 ;  

X =  1, X = 0 ;  

Z =  h, Z = 0 ;  

and 
Z = 0 ,  Z = 0 .  

The general solution of [B.1] is 

X = Cl sinff, X) + C2 cos(21X). 

To satisfy boundary condition [B.4.1], 

C2 = 0. 

Further, to satisfy boundary condition [B.4.2] 

21 = 21~ = nrt(n = O, 1,2,  3 , . . . . )  

The general solution of lB.3] is 

Z(Z)  = A sinh(nnZ) + B c o s h ( n n Z )  + - -  

[B.1] 

[B.2] 

[B.3] 

[B.4.1] 

[B.4.2] 

[B.4.3] 

[B.4.4] 

D 

(nn) 2" 
[B.5] 

Using boundary conditions [B.4.3] and [B.4.4] we get 

n~ sinh(nnh) [B.6] 
A~ - cosh(nnh) - 1 " 

The transition occurs at the lowest value of A, (i.e. n = 1), and we have the criterion for transition 

a s  
2 G__fl_fl _ n sinh(nh) [B.7] 

ct c o s h ( n h ) -  1 " 


